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Abstract. In this paper, we are concerned with the nondifferentiable multiobjective program-
ming problem with inequality constraints. We introduce four new classes of generalized d-type-I
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differentiable and multiobjective programming.

Mathematics Subject Classifications. 90C46, 90C29, 49J52.

Key words. duality, generalized d-Invexity, multiobjective programming, optimality,
pareto efficient solution.

1. Introduction

Convexity plays a vital role in many aspects of mathematical programming
including sufficient optimality conditions and duality theorems see for example
Mangasarian (1969) and Bazaraa et al. (1991).

To relax convexity assumptions imposed on the functions in theorems on
sufficient optimality and duality, various generalized convexity notions have
been proposed. Hanson (1981) introduced the class of invex functions. Later,
Hanson and Mond (1987) defined two new classes of functions called type-I and
type-II functions, and sufficient optimality conditions were established by using
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these concepts. Rueda and Hanson (1988) further extended type-I functions to
the classes of pseudo-type-1 and quasi-type-I functions and obtained sufficient
optimality criteria for a nonlinear programming problem involving these func-
tions. Kaul et al. (1994) considered a multiple objective nonlinear programming
problem involving generalized type-I functions and obtained some results on
optimality and duality, where the Wolfe and Mond-Weir duals are considered.
Univex functions were introduced and studied by Bector et al. (1992). Rueda
et al. (1995) obtained optimality and duality results for several mathematical pro-
grams by combining the concepts of type-I and univex functions. Mishra (1998)
considered a multiple objective nonlinear programming problem and obtained
optimality, duality and saddle point results of a vector valued Lagrangian by com-
bining the concepts of type-I, pseudo-type-I, quasi-type-I, quasi-pseudo-type-I,
pseudo-quasi-type-I and univex functions. Aghezzaf and Hachimi (2000) intro-
duced new classes of generalized type-I vector-valued functions and derived
various duality results for a nonlinear multiobjective programming problem.

It is known that, despite substituting invexity for convexity, many theoretical
problems in differentiable programming can also be solved, see Hanson (1981),
Egudo and Hanson (1987), and Jeyakumar and Mond (1992). But the correspond-
ing conclusions cannot be obtained in nondifferentiable programming with the
aid of invexity introduced by Hanson (1981) because the existence of a derivative
is required in the definition of invexity.

There exists a generalization of invexity to locally Lipschitz functions, with
derivative replaced by the Clarke generalized gradient, see Craven (1986),
Reiland (1990), Mishra and Mukherjee (1994), Mishra (1996), Mishra (1997),
and Mishra and Giorgi (2000). However, Antczak (2002) used directional deriva-
tive, in association with a hypothesis of an invex kind following Ye (1991). The
necessary optimality conditions in Antczak (2002) are different from those cited
in the literature.

In the present paper, we consider a nondifferentiable and multiobjective pro-
gramming problem and derive some Karush-Kuhn-Tucker type of sufficient
optimality conditions for a (weakly) Pareto efficient solution to the problem
involving the new classes of directionally differentiable generalized type-I func-
tions. Furthermore, the Mond-Weir type and general Mond-Weir type of duality
results are also obtained in terms of right differentials of the aforesaid functions
involved in the multiobjective programming problem.

2. Preliminaries

In this section, we extend the concepts of weak strictly-pseudoquasi-type I, strong
pseudoquasi-type I, weak quasistrictly-pseudo type I and weak strictly pseudo-
type 1 functions introduced in Aghezzaf and Hachimi (2000) in the setting of
Antczak (2002) and give some preliminaries.
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Consider the following multiobjective programming problem:
min f(x)
8(x)<0,
xeX, (P)

where f: X— R, g: X— R™, X is a nonempty open subset of R". Suppose
that 171: X x X — R" is a vector function. Through this paper, f'(u,n(x,u))=
lim, w A similar notation is made for g'(u, n(x,u)).

Let D= {xeX g(x)<0} be the set of all the feasible solutions for (P)
and denote I ={1,...,k}, M={1,2,...,m}, J(x)={jeM:g;(x) =0} and J(x)=
{jeM:g;(x)<0}. It is obvious that J(x)UJ(x)=M.

Throughout this paper, the following convention for vectors in R" will be
followed:

x>y if and only if x,>y,, i=1,2,...,n,
x2y if and only if x,>y,, i=1,2,...,n,
xzy if and only if x,>y,, i=1,2,...,n, but x#y.

DEFINITION 2.1. (f, g) is said to be d-type-I with respect to 1 at u € X if there
exists a vector function 1 such that for all x€ X,

F)=f () 2 f'(u,m(x,u))

and

—g(u) 2 g'(u,m(x,u)).

DEFINITION 2.2. (f, g) is said to be weak strictly-pseudo-quasi d-type-I with
respect to 1 at u€ X if there exists a vector function n such that for all x € X,

FO)<f)= f(u,m(x,u)) <0

and

—8(u) £0=g'(u. m(x,u)) £0.

DEFINITION 2.3. (f, g) is said to be strong pseudo-quasi d-type I with respect
to ) at u€ X if there exists a vector function 7 such that for all x€ X,

JO)<f )= f'(u,n(x,u)) <0
and

—8(u) 0= g'(u, m(x,u)) 0.
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EXAMPLE 2.1. Consider the function f=(f), f,): [—1,4) — R defined by

X —1<x<?2
fi=
8 2<x<4

£ 0 —1<x<?2
27 )2x2—8  2<x<4

and the function g=(g,, g,): [—1,4) — R defined by

_ —x?  —1<x<?2
8714 2<x<a

_ S5x —1<x<?2
2716 2<x<4.

Clearly, f,, f,,g, and g, are not differentiable functions at x=2, but only
directionally differentiable fucntions at x=2. The feasible region is nonempty.
Let 7(x,x)=x*(x—x)/2 and x=2.

(1) If xe[—1,2) and f,(x)+f,(x) < f,(2)+f,(2), then it implies that x <2,
which further implies that f](x; n)+ f;(x; 7)) =6x*(x—2) <0, and —g,(¥) —
8,(%) <O implies that g (x; 1) +g,(x; 1) <O.

(ii) The case x €[2,4) can be verified similiarly.

Thus (f,g) is strong pseudo-quasi d-type I with respect to n at x=2. How-
ever, f and g are not d-invex functions at x=2 with respect to the same

n(x,x)= x*(x— x)/2.

DEFINITION 2.4. (f,g) is said to be weak quasi-strictly-pseudo d-type-I with
respect to 1 at ue X if there exists a vector funtion n such that for all xe X,

FO)<f )= f'(u,m(x,u)) <0

and
—g(u)=0=g'(u,m(x,u)) <0.

DEFINITION 2.5. (f, g) is said to be weak strictly-pseudo d-type-I with respect
to m at u € X if there exists a vector function 1 such that for all x€ X,

f)<f )= f'(u,m(x,u)) <0

and

—g(u) £0=g¢'(u,m(x,u)) <0.
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Remark 2.1. The functions defined above are different from those in Suneja
et al. (1997), Aghezzaf and Hachimi (2000) and Antczak (2002). For examples

of differentiable generalized type functions, one can refer to Aghezzaf and
Hachimi (2000).

DEFINITION 2.6. A point x€ D is said to be a weak Pareto efficient solution
for (P) if the relation

F(x) £ f(%)
holds for all x e D.

DEFINITION 2.7. A point x€ D is said to be a locally weak Pareto efficient
solution for (P) if there is a neighborhood N (x) around X such that

J(x) £ f (%)
holds for all xe N(x)ND.

DEFINITION 2.8. A function f: X — R is said to be preinvex with respect to
on X if

Ju+An(x,u)) SAf(x)+(1=2) f(u)
holds for all x,ue X and A€[0,1].

The following results from Antczak (2002) and Weir and Mond (1988) will be
needed in the sequel of the paper.

LEMMA 2.1. If  is a locally weak Pareto or a weak Pareto efficient solution
of (P) and if g; is continuous at X for jeJ(X), then the following system of
inequalities

f'(x.m(x,x)) <0,

& (% m(x,x)) <0,

has no solution for x € X.

LEMMA 2.2. Let S be a nonempty set in R" and s: S— RP be a preinvex
function on S. Then either {i(x) <0 has a solution x €S, or AT{i(x) >0 for all
X €S, or some A€ R, but both alternatives are never true.
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LEMMA 2.3 (Fritz John type necessary optimality condition). Let X be a weak
Parfto efficient solution for (P). Moreover, we assume that g; is continuous for
JeJ(X), f and g are directionally differentiable at x with f'(x,m(x,x)), and
8 (X, m(x,X)) pre-invex functions of x on X. Then there exist ‘_‘EGR’_‘P LERT,
such that (X,€, i) satisfies the following conditions:

ET (%, m(x, %)+ A7 g (%, m(x,5) >0 VxeX,
m'g(x)=0,
g(x)=0.

DEFINITION 2.9. Function g is said to satisfy the generalized Slater’s
constraint qualification at x € D if g is d-invex at x, and there exists X € D such
that g;(x) <0, jeJ(x).

DEFINITION 2.10. Let f: X — R* be defined on X and directionally differen-
tiable at ue X. f is said to be d-invex at u€ X with respect to 7 if for any
xeX,

Fx)=f(u) 2 f'(u,m(x,u)).

LEMMA 2.4 (Karush-Kuhn-Tucker type necessary optimality condition). Let X
be a weak Pareto efficient solution for (P). Assume that g; is continuous for
jeJ(x), f and g are directionaly differentiable at x with f'(x,m(x,x)), and
8 (X, m(x, X)) pre-invex functions of x on X. Moreover, we assume that g satis-
fies the generalized Slater’s constraint qualification at X. Then there exists j1 € R'}
such that (x, ) satisfies the following conditions:

f(@E @, 0))+a"g (%, m(x,%) 20, VxeX, (1)
" g(%)=0, )
g(x)=0. 3)

3. Sufficient Optimality Conditions

In this section, we establish a Karush-Kuhn-Tucker type sufficient optimality
condition.

THEOREM 3.1. Let x be a feasible solution for (P) at which conditions (1)—(3)

are satisfied. Moreover, if any of the following conditions is satisfied:

(a) (f,uTg) is strong pseudoquasi d-type-I at x with respect to ;
(b) (f,u"g) is weak strictly pseudoquasi d-type-I at X with respect to 7,
(c) (f,uTg) is weak strictly pseudo d-type-I at X with respect to m,

then x is a weak Pareto efficient solution for (P).
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Proof. We proceed by contradiction. Suppose that x is not a weak Pareto
efficient solution of (P). Then there is a feasible solution x of (P) such that

fi(x) < fi(x), foranyie{l,2,...,k}. 4)
By condition (a) and (2), we get

f'(xm(x.%) <0
and

BT (%, m(x, %)) <O0.
By these two inequalities, we get

f(@m(x,0)+a"g (%, m(x, %) <0,

which contradicts (1).
By condition (b), from (4) and (2), we get

f(@mx,0)+a"g (% m(x, %)) <0,

again a contradiction to (1).
By condition (c), from (4) and (2), we get

f'(x.m(x,x)) <0
and
R (%, m(x, %)) <0.
By these two inequalities, we get
f(En(x, %) +1"g (%, 1(x, X)) <0,
which contradicts (1). This completes the proof. g

EXAMPLE 3.1. Consider function f=(f,, f,) defined on X =R, by f,(x)=x>
and f,(x)=x" and function g defined on X =R, by

) 2x%, -1 <2
&= —x3, 2<x<?2.5.

Clearly, g is not differentiable at x=2, but only directionally differentiable at
x=2. The feasible region is nonempty. Let n(x,x)=(x—x)/2 and x=0.
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(i) If xe[—1,2),—g,(x)=0, implies that g’(x; 1) =0.
(ii) The case x €[2,4) can be verified similiarly.

f(x) S (%)= Vf(X)n(x,%)=0, forall x.

Thus (f,g) is strong pseudo-quasi d-type I at x=0. But, f and g are not d-
invex functions at x=0 with respect to the same 1(x, x) = (x —x)/2. Therefore,
Theorem 13 of Antczak (2002) is not applicable. Then, by Theorem 3.1(a), x is
a weak Pareto solution for the given multiobjective programming problem.

4. Mond-Weir Duality

Now, in relation to (P) we consider the following dual problem, which is in the
format of Mond-Weir (1981):

(MWD) max f(y)=(fi(y),/2(3),--> fi ()
st (ETf' +u"g)(y,m(x,y)) 20, forall xeD, (5)
Mjgj(J’)>O, Jj=1....m,

Ee=1, (6)
E€R", weR", (7)

where e=(1,1,...,1) e Rk
Let

_{ (0, €, 1) eX X REXR™(ET f'+pu" ") (v, m(x,y)) 20, }
Mjgj(y)20,j:1,...,m,§eR’i,§Te=1,,ueR$
denote the set of all the feasible solutions of (MWD).

We denote by pry W the projection of set W on X.

THEOREM 4.1 (Weak duality). Let x and (y, &, ) be feasible solutions for (P)
and (MWD), respectively. Moreover, we assume that any one of the following
conditions holds:

(@) (f,u"g) is strong pseudoquasi d-type-I at y with respect to 1 and & >0;

(b) (f, uTg) is weak strictly pseudoquasi d-type-I at y with respect to m;

(c) (f,u"g) is weak strictly pseudo d-type-I at y with respect to m at y on
DUpr,W.

Then the following cannot hold:
F) <)
Proof. We proceed by contradiction. Suppose that

F) <) (8)
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Since (y, &, ) is feasible for (MWD), if follows that

—Zm)ujgj(y) <0. ©)

J=1

By condition (a), (8) and (9) imply
f'(y.m(x,)) <0, (10)

> m,gi(y,m(x,y)) <0. (11)
j=1
Since & >0, the above two inequalities give

k m
26T (o y) + 2 pyg (v m(x, ) <O, (12)

which contradicts (5).
By condition (b), (8) and (9) imply

f'(y.m(x,y)) <0, (13)

—> m;g;(y) <O0. (14)
j=1
Since £ >0, (13) and (14) imply (12), again a contradiction to (5).
By condition (c), (8) and (9) imply

(v m(x,y)) <0, (15)

—iujg,-(y)<0- (16)

j=1

Since &£ >0, (15) and (16) imply (12), again a contradiction to (5). This completes
the proof. g

THEOREM 4.2 (Strong duality). Let X be a locally weak Pareto efficient solu-
tion or weak Pareto efficient solution for (P) at which the generalized Slater’s
constraint qualification is satisfied, f, g be directionally differentiable at x with
f'(x,n(x,x)), and g'(x,m(x,X)) preinvex functions on X and g; be continuous
for jeJ(X). Then there exists ju €R'} such that (x,1, ) is feasible for (MWD).
If the weak duality between (P) and (MWD) in Theorem 4.1 holds, then (x,1, )
is a locally weak Pareto efficient solution for (MWD).

Proof. Since x satisfies all the conditions of Lemma 2.4, there exists i€ R"
such that conditions (1)—(3) hold. By (1)—(3), we have that (&, 1, 1) is feasible
for (MWD). Also, by the weak duality, if follows that (x,1, ) is a locally weak
Pareto efficient solution for (MWD). O
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THEOREM 4.3 (Converse duality). Let (y, &, it) be a weak Pareto efficient solu-
tion for (MWD). Moreover, we assme that the hypothesis of Theorem 3.1 hold y
in DUpryW. Then y is a weak Pareto efficient solution for (P).

Proof. We proceed by contradiction. Suppose that y is not a weak Pareto
efficient solution for (P), that is, there exists X € D such that f(x) < f(y). Since
condition (a) of Theorem 4.1 holds, we get

k
Y & f(.n(5.5)) <0. (17)
i=1

From the feasibility of ¥ for (P) and (3, £, ) for (MWD) respectively, we have

_Z/:ngj()_}) <0,
j=1
which in light of condition (a) of Theorem 4.1 yields
Y g3, m(X,5)) <O0. (18)

J=1

By (17) and (18), we get
Y& (% )+ 8)(5, (5. 5)) <0, (19)

This contradicts the dual constraint (5).
By condition (b), we get

k
2 fi(G.m(x,9) <0
i=1

and

> i85, m(x,5)) <O0.

j=1

Since & >0, the above two inequalities imply (19), again a contradiction to (5).
By condition (c), we have

k

2_fi(3:m(%5)) <0
and

Zﬂjg}(i,n(f,i)) <0.

Since >0, the above two inequalities imply (19), again a contradiction to (5).
This completes the proof. g
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5. General Mond-Weir Duality

We shall continue our discussion on duality for (P) in the present section by
considering a general Mond-Weir type dual problem of (P) and proving weak
and strong duality theorems under an assumption of the generalized d-invexity
introduced in Section 2.

We consider the following general Mond-Weir type dual to (P)

(GMWD) max  ¢(y, &, ) =1 () 4w} 8, ()e

st. (ETf 4+u"g)(y,m(x,y)) =0, forall xeD, (20)
My 8y (y)20,1<1<r (21)
Ee=1, (22)

k m
EER], MERY,
where J,, 0<t<r are partitions of set M and e=(1,1,...,1) € R*. Let

VT/—{ (&) €X x R x R™: (fo/;wTTg/)(y,n(x,y))EO, }
pigi(¥) 20, j=1,....m E€R , ETe=1, ueR]

denote the set of all the feasible solutions of (MWD).

THEOREM 5.1 (Weak duality). Let x and (v, &, ) be feasible solutions for (P)
and (GMWD) respectively. If any one of the following conditions holds:

(@) §€>0, and (f +p,8),1,,85,) is strong pseudo d-type-I at y in DUpr, W,
with respect to m for any t,1<t<r;

(®) (f +1y 85> H1,85,) is weak strictly pseudoquasi d-type-1 at 'y in DUpr, W,
with respect to m for any t, 1<t<r;

(©) (f +my,8551,,8),) is weak strictly pseudo d-type-I at 'y in DUpr, W, with
respect to m for any t, 1 <t<r,

then the following cannot hold.:

FO<o(y.€.p).

Proof. We proceed by contradiction. Suppose that

FO)<P(y. €. ). (23)
Since x is feasible for (P) and w >0, (23) implies that
)+ 8, (e < f(y)+uj 85, (e (24)

From (21), we have

—uh g, ()0, forall 1<r<r. o
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By condition (a), from (24) and (25), we have
(f + 15,850 (v (%, ) <O,

and

ps, 85, (v, m(x, ) <0, VI<t<r.

Since £ >0, the above two inequalities yield

(fo”rZMth},) (v, m(x,y)) <O0.

t=0
Since Jy, ..., J, are partitions of M, (26) is equivalent to
(€"f +u"g) (. n(x,y)) <0,

which contradicts dual constraint (20).
By condition (b), we have

(f +1s,85,0) (v (x,y)) <0,
and

w85, (3, m(x, ) <0, VISt<r.

Since £ >0, the above two inequalities yield

(ng’+iu,,g;,)<y,n<x,y))<o.

t=0

The above inequality leads to (27), which contradicts (20).

By condition (c), we get
(f +1s,85,0) (v (x,y)) <0,
and

w8 (v, m(x,y)) <0, VI<r<r.

Since £ >0, the above two inequalities yield

(§Tf’+im,g},) (v, m(x,y)) <O0.

t=0

S.K. MISHRA ET AL.

(26)

(27)

The above inequality leads to (27), which contradicts (20). This completes the

proof.

O
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THEOREM 5.2 (Strong duality). Let X be a locally weak Pareto efficient solution
for (P) at which the generalized Slater’s constraint qualification is satisfied, f
and g be directionally differentiable at x with f'(x,n(x,x)), and g'(x,m(x,Xx))
preinvex functions on X and g; be continuous for jef (X). Then, there exists
€ R" such that (x,1, 1) is feasible for (GMWD). Moreover, if the weak duality
between (P) and (GMWD) in Theorem 5.1 holds, then (x,1, ) is a locally weak
Pareto efficient solution for (GMWD).

Proof. The proof of this theorem is similar to the proof of Theorem 4.2. [
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